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ABSTRACT

This paper presents the generalized linear-
in-parameter model concept as a means to
adduce the somewhat overlooked origins of
familiar parameter estimation methods, to
deduce alternative signal and system repre-
sentations, and as an introduction to ratio-
nal orthonormal filter structures.

I. INTRODUCTION

In digital signal processing (DSP), a FIR
(finite impulse response) or moving aver-
age (MA) model is often preferred over
other models because of its unconditional
stability and efficient parameter estimation
methods. This praxis-driven choice be-
tween MA and ARMA (autoregressive MA)
models may overlook the possibility of us-
ing other well-behaving linear-in-parameter
models than MA. Even a belief that the
non-recursiveness is the key to the good
qualities is possible. However, there ex-
ists an infinite variety of recursive linear-
in-parameter model structures with similar
principal properties to the MA model and
with almost all the same parameter estima-
tion methods.

By defining a generalized linear-in-
parameter model (GLM) based on linearly
independent modelling signals it is possible
to deduce a more general "signal theory” for
the development of alternative signal rep-
resentations and model structures. GLM
provides a direct view into the approxima-
tion problem and a natural introduction
to general orthonormal structures, but it
also suggests the possibility of using non-
orthogonal models. The GLM construction
is made in a Hilbert space although all the
needed formulas and definitions could be

made explicitly. Besides being elegant, the
Hilbert space framework makes it possible
to present theory and methods without the
need for distinguishing between stochastic
and deterministic signals, or between time
and transfer domain representations.

II. GENERALIZED LINEAR MODEL
STRUCTURE

An efficient function space description is
based on the fact that causal and stable
(CS) signals and CS linear time-invariant
(LTI) systems belong to Hilbert spaces of
causal finite-energy signals and LTI sys-
tems. In the discrete time-domain, ¢2(N) is
the space of causal and finite-energy com-
plex signals, or stationary zero-mean and
finite variance complex signals, and the
corresponding transfer-domain space is de-
noted by H2(E). The following definition is
based on the Hilbert space projection the-
orem.

A. Definition of GLM

A model of the form H(z) = N  w;Gi(2)
is a generalized linear model (GLM) for the
system y = H|[z], z,y € £3(N), H € H?(E),
if the modeling signals z; = Gi[z], i =
0,...,N, are linearly independent ¢?(N)
signals. In the least-square (LS) or min-
imum mean-square-error (MMSE) sense,
the optimal model parameters are obtained
from the normal equations
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where (-,-) denotes the inner product. The
matrix form of equation (1) is Rw = p.



B. Properties of the correlation matriz

The solution to the equations (1) is w =
R !p, but as in the FIR case, indirect
methods are preferred to avoid matrix in-
version. Many of those methods rely on the
fact that the correlation matrix R is always
hermitian and positive semi-definite. In
fact, only methods relying on Toepliz form
or (impulse-input) orthogonality of the cor-
relation matrix are excluded in general. On
the other hand, it is interesting to see into
which form the GLM structure is forced
with these assumptions. For a transver-
sal structure, the Toepliz or block-Toepliz
form of R corresponds to identical all-pass
(AP) sections enabling the use of Levinson-
Durbin-algorithm and a connection to lat-
tice structures. The orthogonality assump-
tion forces the GLM into a transversal AP
structure with output tap ”normalization”
related purely to the subsequent AP sec-
tion. It can be proven that orthogonal
GLM structures have exactly the same in-
put dependent upper and lower bounds for
the eigenvalues of R than in the FIR case.
These bounds are independent of the model
order, and for a rational GLM, of the choice
of poles.

C. Euxistence of concrete GLM structures

If the model is presumed to be rational,
then the GLM assumption can be seen as a
restriction on the rational fraction decom-
position defining the model structure. For
a rational GLM, the linear independency is
guaranteed e.g. for transversal structures
of (non-constant) CSLTI rational AP blocks
with possible output tap weighting filters of
the same order.

III. RATIONAL ORTHONORMAL GLM

STRUCTURES

In the signal processing context, rational or-
thonormal model (ROM) structures, based
on orthonormalization of continious-time
complex exponentials, were first introduced
by Kautz, Huggins and Young [5, 14]. Much
earlier, Lee and Wiener proposed synthesis

networks based on some orthonormal struc-
tures but in a more restricted form [8]. The
discrete-time version can be attributed to
Broome [2]. Apparently not known to the
aforementioned, rational orthonormal func-
tion expansions were deduced in the 1920’s
to prove equivalency between rational ap-
proximations and interpolations, and the
least-square problem [13]. More recent pub-
lications, few and scattered, can be found in
the fields of system identification [11, 4, 9]
and FIR-to-IIR filter conversion [3, 1].

A. Kautz functions

Deducable in many ways, the lowest order
rational orthonormal functions are of the
form [13, 9]
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i = 0,1,..., defined by any sequence of
points (2;)$2, in the unit disk and with a
free rotation parameter a; of modulus one.
Functions (2) form an orthonormal set in
H?(E), and this orthonormal set is com-
plete, or a base, with a moderate restriction
on the poles [13]. The corresponding time
functions g;(n) € ¢2(N), i € N, impulse re-
sponses or inverse z-transforms of (2), have
the same properties in ¢2(N). With func-
tions (2), the parallel GLM structure de-
generates into a trasversal Kautz filter (Fig.
1).

A basis representation of a signal h(n) €
2(N) or H(z) € H?(E) is obtained as a
Fourier series expansion of h(n) or H(z)
with respect to (2) and the Fourier partial
sums correspond to LS or MMSE sense op-
timal approximations h(n) or H(z). Eval-
uation of the Fourier coefficients, ¢; =
(h,g9;) = (H,G;), can be implemented by
feeding the signal h(—n) to the Kautz fil-
ter and reading the tap outputs z;(n) =
Gi[h(—n)] at n = 0: ¢; = 2;(0). Input-
output-data identification with the Kautz
model is based on (1): the evaluation (or
approximation) of the inner products and
the solving of the normal equations, or



Figure 1: The Kautz filter. For z; = 0 in
(2) it degenerates to a FIR filter and for
zi =a,—1 < a <1, it is a Laguerre filter,
where the tap filters are replaced by a pre-
filter. For higher order identical sections,
Laguerre form is restored with vectorized fil-
ter sections, internal signals and model pa-
rameters. The general real Kautz filter has
a transversal structure of 2nd order blocks
with dual tap outputs [2].

combined techniques. Signal representation
and approximation are special cases of iden-
tification: R = I in (1) corresponding to
impulse or (appropriate) white noise input.

A Kautz filter produces real modelling
signals only in the case of real poles. From
a sequence of real or complex conjugate
poles it is possible to form real orthonormal
functions with a slightly modified structure.
Some of the deductions are made directly
on the real function assumption [2]. More-
over, the state-space approach to structures
with identical blocks is based on balanced
realizations of real rational AP functions
[4].

B. Methods for the choosing of poles

Even in the one-pole Laguerre case, it is im-
possible to optimize the pole position ana-
lytically. A relation between optimal model
parameters and error energy surface sta-
tionary points with respect to the pole po-
sitions may be used to select a global min-
ima [9]. A classification of systems may be
utilized to associate systems and basis func-
tions [12].

Orthonormal expansions, obtained di-
rectly in the ROM approximation situa-
tion or implicitly by orthogonalizing the
GLM modeling signals, distribute the sig-

nal energy orthogonally in the parameters.
This means that the orthonormal expan-
sion coeflicients are independent of approx-
imation or model order selection and that
signal, model and modelling error energies
are related in the simple form (z,z) =
Zi]\io lcs|?> + (e, e), which can be utilized in
pole location and model order optimization.
Many of the parameter estimation methods
can be seen as orthogonalization operations
on the modelling signals or on the correla-
tion matrix.

The concept of a complementary signal
[14] may be used to directly optimize the
AP structure for a given finite impulse re-
sponse h(n): the output a(n) of the AP
chain with input h(—n) is a decomposition
of the signal energy where the approxima-
tion error energy is a finite sum of the form
E = E(T)b:_m a(n). A network structure
for parallel calculation of the partial deriva-
tives of E with respect to the poles and a
gradient search may be used to optimize
the AP structure [3]. The same principle
has been implicitly utilized in a proposed
recursive AP structure generation [1] with
better guarantee for optimality.

The contrast between the well-defined
fixed model parameter estimation task and
the complicated and non-optimal model
structure optimization makes it tempting
to use sophisticated guesses and iterative
search in model selection. In some sit-
uations, the tuning of a set of separate
resonances and the corresponding time-
constants could be an appropriate ap-
proach. In general, a priori knowledge of
the system and indirect means, such as AR
or ARMA modelling, can be incorporated.
For a chosen set of poles there is still the
choice of pole ordering to be considered.

The choosing of poles is intimately re-
lated to model order selection. A practi-
cal way to restrict the stuctures is to use
identical AP sections because then the pole
and model order selection problems are es-
sentially separated. Identical AP sections
also provide a ”change of variable” inter-
pretation and a related transformation gen-



eralization: if A(z) is the (appropriate)
mth order AP section generating the ba-
sis, then the system y(n) = H[z(n)] can be
transformed to the Hambo domain, y(w) =
H(w)x(z), where %,5 € Hy(E) and H €
HJ**™(E) are the Hambo transforms of the
signals and the system [4]. H(w) is ob-
tained by a change of variable, 2! = N(w),
in H(z) where N € HJ**™ is the state-
space realization "inverse” of A(z). Hambo
transform is a generalization of Fourier and
Laguerre transforms and it can be used to
break up the identification problem into m
Laguerre-type problems which makes the
basis optimization easier.

IV. PROPOSED AND POTENTIAL
APPLICATIONS

A. Filter design

A rational GLM structure is a fixed pole IIR,
filter, unconditionally stable, with almost
all the same parameter estimation meth-
ods as the FIR filter. Especially direct AP
structure optimization schemes are appeal-
ing. On the other hand, manual tuning of
pole positions and time-constants could be
appropriate e.g. when intelligent and non-
technical criteria are desired in modelling.
An attempt on musical instrument body
modellin will be done on this basis.

B. Adaptive filtering

Methods like least-mean-square (LMS) and
recursive least-square (RLS) algorithms,
and their variants, are well-suited for GLM
because of their ”lightness”, even in LTI
modelling. To benefit from complicating
things with the GLM, one has to incorpo-
rate some invariant features of the system
to the basis, or use an adaption mechanism
for the poles. For example, in modelling a
shifting strong dominant resonance, a GLM
defined by a complex conjugate pole pair
and tuned with a single-pole model could
be appropriate.

Simulations on the LMS algorithm reveal
that GLM is particularly competitive in sit-
uations where FIR filters require a huge fil-
ter order and IIR filters have stability prob-

lems. As before, the GLM with identi-
cal blocks has its counterparts in adaptive
lattice algorithms. Convergence considera-
tions for the FIR model are also valid for
orthonormal GLM structures.

C. System identification

There is a long tradition in the Laguerre
domain SI based on Lagurre signal trans-
formation. Recently, there has been some
interest in other GLM structures as well
[11, 4, 9]. A structure with identical blocks
is often preferred to enable efficient state-
space representations and easy model re-
duction. Methods for basis function identi-
fication and the question of windowing will
be considered in this context later by the
author.

D. Linear prediction

Warped linear prediction (WLP) is a GLM
application, deduced somewhat indepen-
dently of the ROM tradition, where delay
elements in the LP analysis and synthesis
filters are replaced with identical first or-
der AP filters [10, 6]. The pre-filter im-
plied by the Laguerre filter is often omitted
to accomplish desired residue signal spec-
tral shaping. WLP has been well studied
but, could more complex structures be of
use? One attempt in this direction has been
made [7]. A more thorough view to win-
dowing and orthogonality could also benefit
WLP.
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